碳化硅是一种宽带隙半导体材料,也是目前发展最为成熟的第三代半导体材料。它具有优良的热学、力学、化学和电学性质,不但是制作高温、高频、大功率电子器件的**材料之一,又可以用于氮化镓衬底材料,广泛应用在电力电子领域、微波器件领域和LED光电子领域。宽带隙半导体材料碳化硅所制作的功率器件可以承受更高电源、更大电路、耗尽层可以做得更薄,因而工作速度更快、器件体积更小、重量更轻。
高纯材料商城提供高质量的碳化硅晶片(碳化硅)
对电子和光电产业。碳化硅晶片是下一个
一代半导体材料,具有独特的电学特性
性能和优异的热性能,与硅相比
晶片和砷化镓晶片,碳化硅更适合高
高温大功率装置。
碳化硅晶片特点:
低晶格失配
高导热性
低功耗
优良的瞬态特性
高带隙
碳化硅晶片应用:
GaN外延器件
光电器件
高频器件
大功率器件
高温装置
发光二极管
碳化硅晶片常规规格
碳化硅规范
薄脆饼
多型:6H-SiC/4H-SiC
晶体结构:六角形
方向:轴上
导电类型:N型
掺杂剂:氮气
直径:2英寸
厚度:330um
电阻率:0.03~0.12欧姆厘米
表面光洁度:硅面抛光
TTV:最大10 um
带隙:3.02 eV/3.1 eV
微管密度:最大200 cm-2
ttom公司-alt:实心窗口文本0.75磅;填充:0cm;mso padding alt:0厘米
0cm 1.0pt 0cm'>涂层:定制
本公司批量供应β—sic纳米级晶须和β-sic亚微米级颗粒(a级和b级)。具体如下:
1.纳米级碳化硅晶须(晶须直径小于100nm长径比大于10,针壮,棒状,灰绿色纯度95%以上)
2,亚微米级β-碳化硅颗粒1000nm以下(纯度95%以上)等级a级
3,亚微米级β-碳化硅b级颗粒(纯度60%以上)广泛用于刹车片,齿轮等普通机械制造行业
作为半导性材料,β-sic比α-sic高几倍,添加β-sic后的发电机抗电晕效果非常明显,同时还具有良好的耐磨、耐高温性能。纯度高的
β-sic可制成单晶碳化硅晶片,其优异的导电、导热性使其在军工、航天、电子行业等高尖端领域用来替代电子级单晶硅和多晶硅。用β-sic做的电子封装材料、发热器、热交换器等具有高抗热震性,良好的热导性,产品性能大幅优于其他材料
本产品的加工定制是是,种类是化合物半导体,特性是耐高温,耐腐蚀,耐磨,用途是增强增韧,半导体材料,规格是纳米级,微米级,含量≥是99,含量是99
从2英寸、3英寸、4英寸到如今的6英寸碳化硅单晶衬底,陈小龙团队花了10多年时间,在国内率先实现了碳化硅单晶衬底自主研发和产业化。据《中国科学报》12日报道,不久前,中国科学院物理研究所研究员陈小龙研究组与北京天科合达蓝光半导体有限公司(以下简称天科合达)合作,解决了6英寸扩径技术和晶片加工技术,成功研制出了6英寸碳化硅单晶衬底。截至2014年3月,天科合达形成了一条年产7万片碳化硅晶片的生产线。
碳化硅作为第三代半导体材料,可用于制作新一代高效节能的电力电子器件,并广泛应用于国民经济的各个领域,如空调、光伏发电、风力发电、高效电动机、混合和纯电动汽车、高速列车、智能电网、超高压输变电等。与使用传统硅器件相比,使用碳化硅半导体电力电子器件可以大大减少电力系统的能量损耗,提高电力使用效率,降低电力系统的尺寸,同时可提高系统运行的可靠性并降低系统整机造价。高效节能碳化硅电力电子器件的普及和应用可以为产业升级、节能减排和建设低碳社会提供技术保障。
据介绍,美国F-22战斗机也大量使用了碳化硅半导体器件。我国碳化硅技术最早也用于军事,现在慢慢扩大到民用方面,一旦普及,将创造巨大的社会效益。
中国科学院物理研究所研究员陈小龙(资料图)
6英寸碳化硅晶体和单晶衬底片
第三代半导体材料
研究人员告诉记者,上世纪五六十年代,硅和锗构成了第一代半导体材料,主要应用于低压、低频、中功率晶体管以及光电探测器中。相比于锗半导体器件,硅材料制造的半导体器件耐高温和抗辐射性能较好。
到了上世纪60年代后期,95%以上的半导体、99%的集成电路都是用硅半导体材料制造的。直到现在,我们使用的半导体产品大多是基于硅材料的。
进入上世纪90年代后,砷化镓、磷化铟代表了第二代半导体材料,可用于制作高速、高频、大功率以及发光电子器件。因信息高速公路和互联网的兴起,第二代半导体材料被广泛应用于卫星通讯、移动通讯、光通信和GPS导航等领域。
与前两代半导体材料相比,第三代半导体材料通常又被称为宽禁带半导体材料或高温半导体材料。其中,碳化硅和氮化镓在第三代半导体材料中是发展成熟的代表。
记者了解到,碳化硅单晶是一种宽禁带半导体材料,具有禁带宽度大,临界击穿场强大,热导率高,饱和漂移速度高等诸多特点,被广泛应用于制作高温、高频及大功率电子器件。
关于氮化镓,曾有报道称,一片2英寸的氮化镓晶片,可以生产出1万盏亮度为节能灯10倍、发光效率为节能灯3~4倍、寿命为节能灯10倍的高亮度LED照明灯;也可以制造出5000个平均售价在100美元左右的蓝光激光器;还可以被应用在电力电子器件上,使系统能耗降低30%以上。
由于碳化硅和氮化镓的晶格失配小,碳化硅单晶是氮化镓基LED、肖特基二极管、金氧半场效晶体管等器件的理想衬底材料。物理所先进材料与结构分析实验室陈小龙研究组(功能晶体研究与应用中心)长期从事碳化硅单晶生长研究工作。
美国在碳化硅晶片技术上遥遥领先,广泛应用于F-22等先进武器。(资料图)
大尺寸晶片的突围
虽然用于氮化镓生长最理想的衬底是氮化镓单晶材料,该材料不仅可以大大提高外延膜的晶体质量,降低位错密度,还能提高器件工作寿命、工作电流密度和发光效率。但是,制备氮化镓体单晶材料非常困难,到目前为止尚未有行之有效的办法。
为此,科研人员在其他衬底(如碳化硅)上生长氮化镓厚膜,然后通过剥离技术实现衬底和氮化镓厚膜的分离,分离后的氮化镓厚膜可作为外延用的衬底。尽管以氮化镓厚膜为衬底的外延,相比在碳化硅材料上外延的氮化镓薄膜,位元错密度要明显低,但价格昂贵。
于是,陈小龙团队选择了碳化硅单晶衬底研究。他指出,碳化硅单晶衬底有许多突出的优点,如化学稳定性好、导电性能好、导热性能好、不吸收可见光等,但也有不足,如价格太高。
早年,全球市场上碳化硅晶片价格十分昂贵,一片2英寸碳化硅晶片的国际市场价格曾高达500美元(2006年),但仍供不应求。高昂的原材料成本占碳化硅半导体器件价格的10%以上,“碳化硅晶片价格已成为第三代半导体产业发展的瓶颈。”陈小龙说。
为了降低器件成本,下游产业对碳化硅单晶衬底提出了大尺寸的要求。因而,采用先进的碳化硅晶体生长技术,实现规模化生产,降低碳化硅晶片生产成本,将促进第三代半导体产业的迅猛发展,拓展市场需求。
天科合达成立于2006年,依托于陈小龙研究团队中在碳化硅领域的研究成果。自成立以来,天科合达研发出碳化硅晶体生长炉和碳化硅晶体生长、加工技术及专业设备,建立了完整的碳化硅晶片生产线。
这些年来,天科合达致力于提高碳化硅晶体的质量,以及大尺寸碳化硅晶体的研发,将先进的碳化硅晶体生长和加工技术产业化,大规模生产和销售具有自主知识产权的碳化硅晶片。
10年自主创新之路
美国科锐公司作为碳化硅衬底提供商,曾长期垄断国际市场。2011年,科锐公司发布了6英寸碳化硅晶体,同年,天科合达才开始量产4英寸碳化硅晶体。
2013年,陈小龙团队开始进行6英寸碳化硅晶体的研发工作,用了近一年的时间,团队研发的国产6英寸碳化硅单晶衬底问世。测试证明,国产6英寸碳化硅晶体的结晶质量很好,该成果标志着物理所碳化硅单晶生长研发工作已达到国际先进水平,可以为高性能碳化硅基电子器件的国产化提供材料基础。
“虽然起步有点晚,但通过10多年的自主研发,我们与国外的技术差距在逐步缩小。”陈小龙说。作为国内碳化硅晶片生产制造的先行者,天科合达打破了国外垄断,填补了国内空白,生产的碳化硅晶片不仅技术成熟,还低于国际同类产品价格。
截至2014年3月,天科合达形成了一条年产7万片碳化硅晶片的生产线,促进了我国第三代半导体产业的持续稳定发展,取得了较好的经济效益和社会效益。
陈小龙指出,当前碳化硅主要应用于三大领域:高亮度LED、电力电子以及先进雷达,以后还可能走进家用市场,这意味着陈小龙团队的自主创新和产业化之路还将延续。
——本文由材料商城整理发布,如有侵权,请联系删除,谢谢!材料商城有靶材,ITO靶材,真空镀膜材料,半导体材料等高纯材料。材料齐全,专业生产,可按需定制,价格实惠,欢迎咨询,材料商城竭诚为您服务!
本文链接:https://www.atozmat.com/arc/1646.html 转载请注明出处,谢谢!
上一篇:高纯溅射靶材的作用
下一篇:ITO靶材概述